top of page
tecqusition

Deep Learning



What Is Deep Learning?

Deep learning is an artificial intelligence (AI) function that imitates the workings of the human brain in processing data and creating patterns for use in decision making. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Also known as deep neural learning or deep neural network.


How Deep Learning Works?

Deep learning has evolved hand-in-hand with the digital era, which has brought about an explosion of data in all forms and from every region of the world. This data, known simply as big data, is drawn from sources like social media, internet search engines, e-commerce platforms, and online cinemas, among others. This enormous amount of data is readily accessible and can be shared through fintech applications like cloud computing.


Deep Learning vs. Machine Learning:



One of the most common AI techniques used for processing big data is machine learning, a self-adaptive algorithm that gets increasingly better analysis and patterns with experience or with newly added data.


If a digital payments company wanted to detect the occurrence or potential for fraud in its system, it could employ machine learning tools for this purpose. The computational algorithm built into a computer model will process all transactions happening on the digital platform, find patterns in the data set, and point out any anomaly detected by the pattern.


Deep learning, a subset of machine learning, utilizes a hierarchical level of artificial neural networks to carry out the process of machine learning. The artificial neural networks are built like the human brain, with neuron nodes connected together like a web. While traditional programs build analysis with data in a linear way, the hierarchical function of deep learning systems enables machines to process data with a nonlinear approach.


How does deep learning work?



As a subset of machine learning, deep learning uses hierarchical neural networks to analyze data. Neuron codes are linked together within these hierarchical neural networks, similar to the human brain. Unlike other traditional linear programs in machines, the hierarchical structure of deep learning allows it to take a nonlinear approach, processing data across a series of layers which each will integrate subsequent tiers of additional information.


A Deep Learning Example:


Using the fraud detection system mentioned above with machine learning, one can create a deep learning example. If the machine learning system created a model with parameters built around the number of dollars a user sends or receives, the deep-learning method can start building on the results offered by machine learning.


Each layer of its neural network builds on its previous layer with added data like a retailer, sender, user, social media event, credit score, IP address, and a host of other features that may take years to connect together if processed by a human being. Deep learning algorithms are trained to not just create patterns from all transactions, but also know when a pattern is signaling the need for a fraudulent investigation. The final layer relays a signal to an analyst who may freeze the user’s account until all pending investigations are finalized.



Deep learning is used across all industries for a number of different tasks. Commercial apps that use image recognition, open-source platforms with consumer recommendation apps, and medical research tools that explore the possibility of reusing drugs for new ailments are a few of the examples of deep learning incorporation.


FOLLOW US ON INSTAGRAM,FACEBOOK AND PINTEREST


DISCLAIMER

The information is provided by Tecquisition for general informational and educational purposes only and is not a substitute for professional legal advice. If you have any feedback, comments, requests for technical support or other inquiries, please mail us by tecqusition@gmail.com.


5 views0 comments

Recent Posts

See All

Darknet

Dogecoin

Ethereum

Comments


Post: Blog2_Post
bottom of page